Моделирование, численное исследование и анализ поверхностных яркостей некоторых объектов Солнечной системы

Оптический телескоп не может повышать поверхностную яркость протяжённых небесных объектов [1, С.137]. При наблюдении в телескоп максимальная поверхностная яркость у протяжённого небесного объекта будет при равнозрачковом увеличении.

Поверхностная яркость Урана, имеющего звёздную величину m=5,7m-6,1m и угловой размер A=B=3,4-3,9 составляет 4000-4530 Кэт. Чтобы это значение было доступно восприятию, необходимо, чтобы на телескопе было поставлено наименьшее полезное увеличение. Потери света в телескопе при отражении и поглощении будем считать небольшими и несущественными.

Учитывая наибольшее полезное увеличение телескопа, получаем, что телескоп может максимально понизить естественную поверхностную яркость протяжённого объекта в 282,24 раза.

Для того, чтобы различить, что светлый объект на тёмном фоне представляет собой диск, а не точку, необходимо, чтобы угловой размер этого объекта был не менее 5' [2, С.18]. Поэтому, чтобы разглядеть диск Урана, имеющий угловой размер 3,4-3,9, необходимо применить приблизительно 76,9-88,2-кратное увеличение, то есть практически 90-кратное увеличение.

Космические снимки показывают, что на поверхности диска Урана никаких заметных деталей не видно, и сам Уран выглядит однородным шаром интенсивного голубого цвета. Чтобы диск Урана достиг хотя бы более-менее приемлемых для рассмотрения 20', необходимо применить 308-353x, то есть минимум 300-кратное увеличение.

Обеспечить 300-кратное увеличение и возможность видимости естественной поверхностной яркости Урана может телескоп с диаметром объектива не менее 1800 мм.

Несмотря на существование на сегодня немалого количества телескопов с диаметрами объективов в несколько метров и проектирование ещё более крупных телескопов с диаметрами объективов в десятки метров, 1800-миллиметровый телескоп остаётся инструментом более характерным не для любительских наблюдений, а собственностью серьёзных научных обсерваторий.

Поэтому при наблюдениях Урана с небольшими телескопами поверхностная яркость его бывает снижена в погоне за желанием разглядеть диск.

Так, например, в 300-миллиметровый телескоп поверхностная яркость Урана при увеличении в 300 раз составляет 111-126 Кэт и близка к критическому значение 100 Кэт, ниже которого различить истинный цвет небесного объекта невозможно. В 110-миллиметровые телескопы при 169 кратах увеличения поверхностная яркость Урана оказывается равной 47-53 Кэт и сравнима с поверхностными яркостями ярчайших планетарных туманностей. Видимо этим объясняется само название этих туманностей – планетарные – за их сходство с неяркими дисками Урана и Нептуна.

Поверхностная яркость Нептуна (m=7,7m-7,8m; A=B=2,2-2,3) составляет 2030-2037 Кэт. Минимальное увеличение для различения диска Нептуна приближённо равно 140х. И хотя на диске Нептуна тоже никаких особых деталей с поверхности Земли рассмотреть не удаётся, всё же желательно рассмотреть сам диск покрупнее, а, значит, применить увеличение 500-600x. Такие значения увеличений близки к предельным из-за влияния атмосферы наземным увеличениям, и даже с 500-миллиметровыми телескопами поверхностная яркость Нептуна составляет всего лишь десятки Кэт, отправляя Нептун в разряд именно ярких планетарных туманностей.

По необъяснимой случайности истинные цвета Урана и Нептуна оказались схожим с цветами сумеречного зрения и, быть может, переход от истинного цвета к сумеречному будет происходить не очень заметно.

Однако, учитывая максимально возможное понижение в 282,24 раза поверхностной яркости телескопом, даже довольно яркий Сатурн может потерять свой истинный золотисто-жёлтый цвет, поскольку его поверхностная яркость не превосходит 21000 Кэт. Такой переход от безусловно жёлтого цвета к бесцветному серому явно заметен.

В результате потери возможности видеть объект в цвете ухудшается и видимость мелких деталей объекта. Это связано с переходом зрительного восприятия с колбочкового аппарата на палочковый.

Возможность видимости истинного цвета Плутона требует более подробного исследования. Остальные планеты Солнечной системы имеют высокие значения поверхностных яркостей и остаются видимыми в своём истинном цвете при любых полезных увеличениях телескопа.

Литература.

1. Гершензон Е. М., Малов Н. Н., Мансуров А. Н. Курс общей физики: Оптика и атомная физика: Учебное пособие. – М Просвещение, 1992. – 320с.

2. Лабузов А. С. Лабораторный практикум по астрономии: Учебное пособие. – М Прометей, 1999. – 90с.

Лабузов А. С., ЕГУ им. И. А. Бунина

Похожие статьи:

Новое на сайте

  1. Почему Стивен Хокинг ошибается насчет угрозы внеземной цивилизации
  2. Планета Нибиру (Планета Х), События 2012 года, Смена эпох и полюсов.
  3. Часы с Пасхальным календарем
  4. Субъективно и объективно.
  5. Ошеломляющий вид на МКС с пристыковавшимся Disсovery - с Земли!

Популярные записи

Похожие записи